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Abstract. The paper addresses the problem of optimizing the placement of facilities and the distribution of material
resources in the context of emergency logistics. The relevance of the research is driven by the increasing frequency of
natural and man-made disasters, which necessitates effective response planning to mitigate losses and threats to hu-
man life. The focus is on the development of mathematical models and methods aimed at improving the efficiency of
logistical operations.

A new approach to mathematical modeling of multi-stage logistics processes is proposed, which combines the ide-
as of optimal placement of intermediate distribution centers and multiplex territorial zoning. Existing models of facility
location problems with two-stage resource distribution have been improved by assigning each end consumer to several
nearest intermediate distribution centers, which increases the reliability of service delivery to those in need. The facilities
to be located may serve either as primary collection points for the population in case of evacuation from an emergency
area, or as distribution and supply points for essential goods delivered from state reserve warehouses or other hubs and
then distributed among intermediate centers for delivery to residents of the affected region.

The mathematical formulation is based on the theory of continuous optimal partitioning problems, duality theory, lin-
ear programming methods of the transportation type, and modern algorithms of nonsmooth (derivative-free) optimization.
A numerical scheme is proposed for solving optimal flow distribution problems in multi-level transport and logistics net-
works.

The results have practical significance for planning logistics operations in emergency situations, particularly for the
effective location of medical and humanitarian aid points, resource allocation, and population evacuation. The proposed
approach enables the implementation of a comprehensive decision support system for crisis response management and
can be applied to a wide range of strategic problems in industrial, social, and economic domains, providing effective
support for decision-making in complex logistics systems.

Keywords: optimization, transport and logistics system, multi-stage distribution, decomposition of a continuous set,
system approach

1. Introduction

The relevance of improving existing and developing new mathematical models
and optimization methods for facility location and distribution of material resources
in emergency logistics 1s driven by the increasing number of natural and man-made
disasters. Immediate response to emergencies is the key to mitigating these threats
and losses. Since response time depends on the number and location of emergency
service facilities, the problem of determining their optimal number and best location
has strategic importance and attracts great interest from researchers [13].

The high uncertainty of events, dynamic environmental conditions, and other fac-
tors require a systematic approach to planning preventive measures and prompt re-
sponse to emergency situations, involving methods of mathematical and computer
modeling.

The object of research is multi-stage logistics processes in emergency situations.
The subject of research is models and methods of optimal distribution of emergency
logistics system units and distribution of material flows between them.

The purpose of the study is to improve the efficiency of logistics operations and
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emergency response through mathematical and computer modeling of rational distri-
bution of transport and material resources in emergency logistics systems.

Mathematical models of two-stage evacuation processes are presented in [2].
These models consider the optimal distribution of human flows in a transport system
with two-level units — first-stage centers (medical stations receiving citizens from af-
fected areas) and second-stage centers (specialized emergency service units providing
further assistance to the evacuated population). It was found that the mathematical
description of such processes corresponds to the problems of optimal partitioning of
continuous sets with the placement of subset centers and additional connections. [3].
The universality of this class of problems was demonstrated in [2] through its appli-
cation not only to evacuation processes with assembly, intermediate, and reception
points but also to processes related to delivering essential goods to the affected popu-
lation. In such cases, it is necessary to determine the volume of material flows and
logistics connections between state reserve warehouses, distribution centers, and final
delivery points in disaster areas. In this study, the above models and their implemen-
tation methods are generalized to the case where residents of the affected area can be
served by several nearest centers.

Many problems in emergency response planning are presented as classical opti-
mization problems, including resource distribution, facility location, vehicle routing,
and optimal control of emerging processes. A comprehensive review of scientific
works published in the first 20 years of this century on humanitarian logistics and op-
timization problems related to evacuation planning, route finding, and shelter location
during urban emergencies, intentional actions, or natural disasters is given in [1].

We present an overview of research over the past decade, focusing on existing
approaches to modeling two-stage evacuation or distribution processes. For example,
[4] introduces a two-stage model for reliable facility location when some facilities
may be disrupted, e.g., by a natural disaster. Planning is carried out in two stages: a
robust network of service centers and their assigned clients is designed in the proac-
tive phase, while in the reactive phase, when a service center is destroyed, its clients
are reassigned to other available facilities. This model is based on the classical p-
center problem. In [5], the authors present the results of their 15-year research on
modeling and developing solution methods for two-stage facility location problems
without capacity constraints. The industrial application in freight transportation,
which initially sparked the authors’ interest in this problem, led to the study of its
generalization to the case with modular costs.

A significant part of the mathematical description of two-stage location—
allocation processes consist of stochastic models. In [6], a new class of two-stage sto-
chastic facility location problems with unsecured facilities is introduced, taking into
account the “nervousness” of the system that may arise due to decision-making under
uncertainty. The authors attempt to address a practical issue: adaptive uncertainty-
aware distribution decisions at the second stage may significantly deviate from the
corresponding first-stage allocation decisions. To solve such models, exact scenario
decomposition algorithms of the Benders type have been developed. The facility lo-
cation problem in which customer demand is highly uncertain and information about



90 ISSN 3083-6271 (Print), ISSN 3083-628X (Online) Geo-Technical Mechanics. 2025. Ne 174

the distribution of uncertainty is unavailable is considered in [7]. A two-stage sto-
chastic mixed-integer programming problem is formulated here: optimal facility se-
lection at the first stage and optimal operation decisions for each facility at the second
stage.

In [8], two classes of multi-objective two-stage stochastic programs on finite
probability spaces with multidimensional risk constraints are examined. The first-
stage problem includes a multidimensional stochastic benchmarking constraint based
on a vector random variable. The vector random represents multiple, possibly sto-
chastic, conflicting performance indicators that are associated with the decisions of
the other stage.

The study [9] develops a multi-objective stochastic programming model to en-
hance disaster preparedness and response, with particular focus on the critical first 72
hours after earthquakes. The aim is to optimize the distribution of resources, tempo-
rary medical centers, and medical personnel for effective life-saving efforts. Dynamic
and stochastic programming, as well as discrete Markov chains, are employed here.

The work [10] is devoted to the optimization of resource distribution during natu-
ral disasters accompanied by the emergence of secondary hazards. A two-stage sto-
chastic optimization model is proposed to simulate random occurrences of multiple
disasters in order to optimize the distribution of rescue teams, warehouses, and medi-
cal resources.

In [11], the problem of locating multiproduct facilities in a two-stage supply chain
is studied, including the determination of warehouse (distribution center) locations,
their capacities, and optimization of product flows from plants to warehouses and
customers. Plants are assumed to have limited production capacities, while potential
warehouses offer several possible capacity levels to choose from. The authors intro-
duce two Mixed-Integer Linear Programming models, aiming to minimize fixed
warehouse opening costs and transportation costs. In the first model, warehouse ca-
pacity is defined by the maximum number of each product that can be stored, while
in the second it is defined by warehouse size (volume).

In [12], a multi-period maximal covering location model for medical services is
evaluated, which takes into account the inter-service dimension as well as equitable
access. A two-stage optimization strategy is applied: at the first stage, facilities are
located to maximize covered demand, while at the second stage patients are allocated
to the maximum-coverage facilities over several time periods. The facility location
problem with uncertain customer demand is studied in [13]. The authors propose a
two-stage formulation of this problem with mixed-integer "wait-and-see" decisions
and discrete uncertainty in the objective function.

One of the most widely used research approaches to solving the emergency facili-
ty location problem is its formulation as a discrete coverage-based emergency facility
location model [1, 16]. In [1], a comprehensive review of this problem is presented,
including mathematical models, their extensions, and applications. Solution methods
and promising future research directions based on coverage models are also dis-
cussed. In [16], the problem of optimal placement of rescue facilities with minimum
service time to the farthest client in a given region is examined. The mathematical
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models are discrete-continuous multiple-coverage problems of a bounded set in £
with minimum-radius circles. The centers of the circles forming the coverage are lo-
cated on a finite set of candidate locations. The objective is to minimize service time
even when the center closest to the affected resident is unable (for certain reasons) to
provide the required assistance.

The article [14] presents a bi-objective model for determining the location of
emergency logistics facilities, considering location costs, human resource planning,
demand uncertainty, and road conditions.

A comprehensive methodological review of research related to the use of mathe-
matical modeling, optimization, and machine learning methods in emergency re-
sponse planning is provided in [15]. Machine learning offers an adaptive, data-driven
approach to disaster response. The machine learning and reinforcement learning (RL)
are particularly effective in problems requiring real-time adaptation compared to
transportation optimization models. However, the implementation of machine learn-
ing in disaster response faces challenges such as data availability and quality, inter-
pretability of learned models, and generalization of solutions to different disaster sce-
narios.

2. Methods

In this work, the object of study is the two-stage distribution of material flows in
emergency logistics systems, whether for population evacuation from a disaster-affected
area or delivery of essential goods from state reserve warechouses to residents through
intermediate collection or distribution centers. As shown in [2], the mathematical
framework describing such models is the same — optimal partitioning problems of con-
tinuous sets with additional constraints. Therefore, we will use the term "i-th stage cen-
ters" for the respective units of the logistics system. Unlike the models proposed in [2,
3], in this work, it is assumed that residents of the affected area may be served by several
nearest centers. Thus, we generalize the developed mathematical models of two-stage
location/distribution to the case of multiplex zoning of the territory [17, 18].

We formulate several assumptions regarding the input data. We assume that:

1. The logistics centers perform the functions of distributing emergency relief mate-
rials and planning human resources. The construction and maintenance costs of each in-
termediate logistics center are considered known and remain constant throughout the
studied period.

2. The time required to move between demand points and centers, as well as be-
tween the two stages of centers, is directly proportional to the distance.

3. The cost of establishing and equipping the second-stage centers is assumed to be
known for all units.

4. The distance from each logistics center to each demand point is considered known
and does not change over time.

5. Each logistics center, whether it is a final collection center for the affected popula-
tion or a state reserve warchouse, can accumulate or direct human or material resources
from/to several intermediate points. Each intermediate distribution center is assigned a
specific zone of the territory affected by the emergency for servicing. At the same time,
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it 1s assumed that residents may use the services of any of the & nearest centers, which e
ensures a flexible and reliable logistics chain.

6. The territory affected by the emergency is densely populated, and the distribution
of residents, and thus the demand for emergency aid, can be described analytically by a
certain function.

7. All resources accumulated in an intermediate distribution center must be delivered
to the final recipient.

Thus, it provides for: 1) multiplex zoning of the territory, i.e. overlapping zones in
case the nearest center is unable to provide the customer with the service; 2) two-stage
resource distribution; 3) optimal placement of intermediate distribution centers. Let us
now turn to the mathematical description of the above processes.

Let Q be the territory that has been damaged (can be damaged) as a result of an
emergency event, m% Qc Q be the safe territory where intermediate distribution
centers can be located, m? p(x) be the function describing the distribution of re-
sources at point x € €, resource units/m?; N and M are the number of intermediate
and final points; S is the total amount of resource in the territory of €, resource units;

7; is the i-th center of the r-th stage, and the centers of the /-s¢ stage will be consid-
ered intermediate; b] is its capacity (capacity, the maximum amount of services that
the respective centers can offer), »=III of the resource units; ¢; (x, ! ) is the cost of
delivering a resource from the point x€EQ to the center ri] , UAH/unit of resource;
c! (x,rl-] ) is the cost of transporting the resource from Ti] to TJI-I , UAH/unit of re-

i

. . . I
source; cél (rll ,z'l-l ) is the cost of organizing a transportation from center z; 10 o

.] ] 5

UAH/unit of resource; al-l is the cost of organizing an intermediate center at the point
1

T; Z'JI-I , UAH/unit of resource; a][-] are the fixed organizational costs of the center
r][-[ , UAH/unit of resource; Vij is the amount of resource transported from Til to z'][-[

(or in the opposite direction), unit of resource, i =1, N; j=1LM.
It is required to place the centers 1'1] ,...,T]]\; from Q, to divide the given region

into zones Q ol =LL, which cover customers that have the same k& nearest service

(intermediate distribution) centers and volumes of transportation v = {Vll,. S VNM },

for which the total cost of transporting resources and the organizational expenses for
opening and equipping the centers were minimized.

Here, o, = { pll s Dseees p,lc} is a set of indices of centers associated with the subset

Q- The partitioning of the region Q and the determination of resource flows in the

logistics network must be carried out taking into account the capacities of all sec-
1

ond-stage centers 7 .
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For the mathematical formulation of the problem, we introduce the following no-
tation: N = {1,2,...,N} — the set of all center indices; M(N,k) — the set of all -

element subsets of the set N, |M(N,k)| = C]/f, =L;0 ={p11,pé,...,p,1€},l =1L, — el
ements of the set M(N, k).

Definition 1. A collection of subsets {Qal Qg 5 .,QGL} from Q< E? is called a
partition of the k-th order of the set Q to its subsets Qg Q055,02 if

RS0y

L
Jo, =, meS(QO_l_ NGO, ) =0; 0;,0,, e M(N,k),i = m,i,m=1,L;
[=1

where mes(-) denotes the measure of a set. The subsets Q__ are called subsets of the

O
J
k-th order of the set Q.
Let Zg K denote the class of all possible partitions of k-th order of Q into its sub-
sets Q5.8
N,k L
ZQ’ :{CO:{QO.] ”"9QO'L}: UQUI :Q,

/=1
meS(QGi mQO'j):()a 6170] EM(Nak)ai;tja i:j:LL

I

The mathematical model of two-stage optimal distribution of material resources
with the placement of intermediate service centers and the zoning of the emergency
area is formulated as follows:

Problem 1:

F(E,rﬁv)—)min, (1)

F(a_),z-l,v):ﬂléi _[ Z (c(x,ri])+al-1)p(x)dx+

[=1 Qg ieo;

N M
(. _1 _II 1l
+ﬂ222(€l] (Tl' ,Tj )‘+‘a] )Vl'j,

i=1 j=1
on condition of:

L / M
> | vip(x)dx=3v;. i=LN, )
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N
11 .
Yvy=bi, j=LM, 3)
i=1
a_)eZg’k, VeR}\L,M, eV, (4)

Here 7/ = {TII,...,T]IV}, Ti[ € Q; xX= (x(l),x(z)) eQ; C()C,Tl-]), i=1,N are bounded
functions defined on QQx€2 function. The function p(x) is bounded and nonnegative

51, ll>0 b” >(0 are given constants, i:I,_N, j=LM; P, =0,

on Qj;a
,Bl + ,82 #( are given parameters that specify the priority of the terms and account
for their normalization and dimensionlessness; Zg’k is the class of all possible multi-
plex partitions of Q; R]J\F,M and the space of (NXM) nonnegative real matrices.

The coefficients 71_1 determine the share of the service market that the center z;
occupies in the territory Q,, among the objects {z'j, T idseeesT } that serve this terri-
1 2 k

tory, such that forall i=1,N, [ =1,L:
7/11+7/Z,+...+7/l;:1,0S7-1£1,ieo7. (%)
A 2 Jk !

If we assume that the distribution of demand for services over the entire region 2
is proportional to the capacities of the first-stage centers bi], so, it will be for all
[=1,L and for all it will be i=L,N, i€ oy, are given by the following expression:
71-1 :bl-l /Y bé. If the demand is distributed evenly among the centers, then

q-9<0]

yl= % it will be, for all 7 and .

The problems (1) — (4) for any fixed vector ! e OV are solvable if the following
conditions are met:

1) §= Ip(x)dx

2) the capacities of the centers at the first stage are equal to bi], i=1,N;
3) the following conditions are met:

MS

=S. (6)

zgz

The validity of the statement can be easily shown by analogy with the proof of the
lemma in [19].

1

.
Il
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The method of solving the Problem A assumes its representation in terms of char-
acteristic vector-functions of a partition of the k-¢h order of the set Q2.
Definition 2. The characteristic vector-function of a partition

o= {Q Q Q } of the set Q of the k-t order is called the vector-function

o R o/ ELRR L o)

defined )(() = (;{1 (), . (), o XL ()) , determined by the formula: a.e. for x € Q

LxeQ,,
Zl(x) { l

Oer\Q , =1,

To write the Problems (1) — (4) in terms of characteristic partitioning functions,
we use the vector function /1() which we assume to be unknown, and the NL-

dimensional vector with coordinates

if ieoy,

yHE i=L,N, I=1,L,
0 in the other case,

where o, = { s ],é} the set of indices of centers, associated with Q

Obviously, Z?/:l/ljl- —k for all /=1,L. The vector A’ = (A ,...,ﬂ,]lv) defines the

indicators of the indices of the centers of the set o; with N and, therefore, will be
used as a template for the component y; (x) of the characteristic partitioning vector

function.
The problem A is written in the following equivalent form.
Problem B:
min I(;((-),rl,v),
(}((-),Z’I ,v)eF{‘x oV xR]J(/M
where

1200 v)=E | ZZ((c(x N+ a))A! ) (o +

I=1i=1

M
N u (ol 21y 4 gl
B2\ (@) +aj vy,

i=1 j=1
on conditions:

M
jzy’ﬂ )o(x)dx=Yv;, i=LN, (7)

Q!/=1 j=1

Zvy b, j=1M, (8)
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L
r¥ ={x("):z(x)=0vLI=LLY z(x)=1ae. forer}
/=1

3. Theoretical part
To solve the Problem B, its LP-relaxation is performed, where the components

X () , [ = I,_L are allowed to take values in the interval [0, 1].
Problem C:

min A ](Z(')’Tlav);
(2O )T OV xRy,
on conditions (7), (8), where
05 = {20 =210 2o 22.0)):0< () <1,

[=1,L; Zszﬂl (x)=1ae. forxe Q} .

To solve the Problem C, we make use of elements of duality theory. The La-
grange functional of this problem can be written in the following form:

(O .o Owm) = | i%(ﬁ(c(x,ri] ) +af )+7/l-ll//ij/1,-l,0(x) 21(x)ds +

Ql=1i=1 k

N (. 1 I 17 M 11 L
+ZZ(ﬂz(c,-j (r,- T} )+a,- )-1; _l//i)vij +> 1n;b; + JV/O(X)[ZZI(X)_I]JX'

i=1 j=1

The functional W(( ;((-),rl ,v),(z//o(-),z//,n)) is defined on the Cartesian product

(Axf)NxR]J\}M)x(CDxRNxRM),Where

A:{;((-)EL%(Q):OS;(,(x)SIVer,Z:I,_L}; q)z{y/():l//o(-)eLz(Q)}.

The problem which is dual to the problem C is formulated as follows:

H(yo()y.1)—> max : 9)
(wo (~),y/,77)ed)><RN><RM
H(yoO)w.n)= min W((z(-),f[ ,V),(V/o(-),t//,n)) -

(;(,z'l V)eAxQY xRy

Let all the parameters in W, except for y(-), be admissible and fixed. Then
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min W ( (007 ). 000 0p7.1)) =
YAQISIN

N M
=33 Bo(cf (o] ey +aly-n; - wl>v,,+zn,b” Jwo(x)dx+

i=1 j—l j=1 Q

+I min l: (ﬂl (c(x,7; )+a)+7/ll//lj/llp(x)+l//0( )}Zl(x)dx.
=1

Q] 10<Zl (x)<1

We shall further use the notation: d;(x, Ti[ ) = py(c(x, rl-l )+ al-l )/ k.
The minimal value of the latter term is attained at the function %, which components

almost everywhere for x with Q satisfy the conditions: for / = LL
. S 1 / /
1, if Z(di(x,z'l- )+ 7ivi) A p(x) +yp(x) <0,
i=l1

N
21(x)=10, it Y(d;(ez)) + 7w AL po) + e () > 0, (10)
i=1

N
a €[00, it 3 (d;(x.z]) + ) A p(x) + o (x) = 0.
i=1

If in this inequality and in (10) v, (x) = (x), then the following equality holds:

L

Z;{I(x)—I:O.

/=1

This implies that among the components of the vector j(x) in (10) there is only
one unit component, let its number be / and then:

-

N
Lif 3(dye )+ 7w ) A 0o + 40 () =

i=1

Z2i(x)= ul . (1D
) %Z(di(x,rfﬂ75!//i)ifp(x)+l/fo(x),
i=1
0 otherwise, Vi=1,L.

By substituting (11) into the expression for W when w(-) =/ (-), we obtain:

w
min W (GO0, (70 O)) =
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N M
=33 (Baolc) 7}t +al ) -n; - w,>v,j+zn]b”

i=1 j=I Jj=
+J ;nlni;(d (7)) + 7, )ﬂisp(x)dx = W((Tl,v),(y/,n)).

Thus, the problem dual to problem C, takes the form:
H (w,n) - max

(y/,n)eRNxRM
A= min (" w.0.0)

(! )V xRy

Now let us assume that all parameters except v are fixed in the problem (12).

Then:
mznZZ(ﬂz(c ! H)+Cl )= — W)V

11]1
0, if By(cj (¢ 7 ) +aj ) =1 ~y; 20,

0, if By (c]! (] .o ) +al ) =7, -y, <0.

The values of Vij which achieve the minimum value for v 1n the function

VI_/((TI ,v),(w,n)) satisfy the condition:
. |20, if Byl (ol e +al )=y 40,

Vl'j:
0, if Byl (] i) +al ) >y +n,.

Each inequity from the following system

Ba(c (o} ey +a])—n;—w; 20 or

I _II I
ﬂz(c (Tl, ])+a )—y;,Vi=LLN,j=1,

Is satisfied, if

77]—1’11171(,32(0 (2'[, H)+a )— l//l)ijl,M.
i=l,N

Thus, by substituting such expressions into W, the problem (12) takes the form:

(12)

(13)
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O(y)— max , O(w)= }ni[zNG(z'l,w), (13)
WweR 7 Q)

G(T[,l//) :gl;s

M
+ 20 min (Baeif el o)) + ) -w )
ER

where

N
in 3 (d; (el ) + 7 )4 p (x)des
=]

=1.N

Substituting the expression for d;(x, Z'i] ) and avoiding the use of index indicators

that form the combination o, s=1,L, we can write the function G(Tl,l//) as fol-
lows:

Gz'.y)=] min Z(ﬂl(c(x )+a{>+7£w,~jp(x)dx+
QGIEI\;IflLk)Z :

+Zb” min(f(ei el )+ ) - )

Thus, taking into account the non-negativity of the function p(x), the characteris-
tic functions of the subsets Q*a, .l =1, L, which form the optimal multiplex partition of

Q in the problem B, are given by the following formula: for almost everywhere for
xeQ

N N
1, if Z(di(x )+mul) %Z(di(x N4y y/l)z ,
()= 7 = (14)
0 otherwise, Vi=1L,

where (7),....,Tx, ¥1,-..\/ ) is the solution of the problem (13). To identify the links
between the centers of the first and second stages — the values of ‘71']' of resource

flows between them, the following linear programming problem of the transport type
should be solved:

N M
ZZ(C I, H)+a )v — min (15)
i=1j=l1 VERN

M

Sv;= jzy’ﬂ/ )p(x)dx, i=1N, (16)

j=l1 Ql=1
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ZVU =b/, j=LM. (17)

At the core of the numerical algorithm for solving the problem lies the following
scheme:

1. We solve the problem (13) using any method with the help of Shor’s r-
algorithm and determine the optimal location of the first-stage centers and the charac-
teristic functions of the subsets that form the optimal multiplex partition of the set Q.
Thus, each first-stage center is assigned its service area, taking into account that the
zones may overlap up to k times.

2. We calculate the capacities of the first-stage centers based on the defined ser-
vice areas, considering the multiplicity of the partition.

3. We solve the problems (15)—(17) using the potentials method and determine
the optimal values of the resource flows between the first- and second-stage centers.

4. We visualize the calculation results.

4. Results and discussion

To verify the correctness of the constructed models and the developed algorithms, a
series of computational experiments was conducted. Firstly, particular cases of the for-
mulated problems were solved, where the service areas are monotonically assigned to
each intermediate center. In this case, the obtained results are identical to those presented
in [17, 19]. Secondly, two-stage resource distribution problems were solved, where the
centers are fixed but overlapping of their service areas is allowed. The results confirm
the adequacy of the mathematical description of such processes using the developed
model (1) — (4). Thus, Figure 1 presents a visualization of the optimal two-stage distribu-
tion of a total resource amount of 100 units, uniformly distributed over a square territory,
among N intermediate centers (collecting the resource) and M destination centers. The
amount of collected resource and the amount directed to the second-stage centers are
indicated. The capacity of each second-stage center, along with its number, is shown in
red. The coordinates of the intermediate centers are predetermined. The zones are de-
fined for monopoly servicing (k = 1). Next to the number of each first-stage center, the
amount of collected resource is given in parentheses (blue color). The figure captions
indicate the values of the components of the objective functional: costs at the first and
second stages of distribution and delivery of the resource, as well as their sum.

As can be seen, the capacities of certain intermediate centers, as well as the resource
flows between the first- and second-stage centers, may sometimes turn out to be too
small. Their practical implementation may be associated with certain difficulties. For
instance, servicing such centers and flows is not rational from the standpoint of using
transportation means or involving human resources. To prevent such situations, two con-
secutive procedures for improving the scheme of two-stage rational resource distribution
are proposed.

The first procedure is the exclusion from consideration of intermediate centers
which, according to the optimal partitioning of the territory, turn out to be low-
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capacity. Their resources are then redistributed among the remaining centers, for
which the formulated problem is solved again. The second procedure is developed to
avoid small resource flows between the first- and second-stage centers. It is assumed
that the second-stage centers can accept somewhat more resources than initially spec-
ified. Their capacities are artificially increased by a small value. This increment is
determined by a lower bound on the amount of resource flow between the first- and
second-stage centers (i.e., the minimum amount of resource transportation worth per-
forming from the perspective of process organization).

Two-5tage Cost Visualization Two-Stage Cost Visualization
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Figure 1 — Solution of the resource flow optimization problem with N fixed
intermediate centers and M second-stage centers

A fictitious intermediate center is introduced with a capacity equal to the total in-
crement of the capacities of the second-stage centers, and with a transportation cost
that significantly exceeds the total cost of all actual shipments. The extended trans-
portation problem is then solved. Figure 2 shows the result of applying the described
rationalization procedures to the two-stage resource distribution process for the opti-
mal solutions presented in Figure 1.

In the optimal partition in Figure la, the service zone of the 6th center turned out
to be very small, with the amount of collected resource equal to 0.06 units. After ex-
cluding this center from consideration, the obtained optimal partition is shown in
Figure 2a. At the same time, the value of the objective functional is increased by only
0.002% — from 991.09 to 991.11. In Figure 2b, a rational partition of the territory into
service zones is shown for ten out of the fifteen centers presented in Figure 1b — cen-
ters 6, 9, 13, 14, and 15 were found to be irrational for use and were excluded from
consideration. Given a 10% increment of the capacities of the second-stage centers,
eleven active links between the centers of the two stages were obtained.
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Figure 2 — Result of rationalizing the scheme of connections between first- and second-stage centers

Compared with the connections presented in Figure 1b, in Figure 2b there are no
flows of 0.04, 0.09, or 0.89 units of resource. The total costs due to the redistribution
of resource flows increased only slightly — from 857.57 to 858.23 conventional units,
which is almost 0.08%. Thus, the calculation results confirm the expediency of apply-
ing rationalization procedures to the optimal solutions of two-stage location—
allocation problems.

5. Conclusion

Mathematical models, methods, and algorithms have been developed to determine
resource flows in multi-level transport and logistics systems where a resource is con-
tinuously distributed over a given territory, and intermediate logistics centers are lo-
cated within that territory. It is assumed that each consumer of the service is assigned
to several of the nearest intermediate centers to increase the reliability of service. The
developed mathematical framework is a symbiosis of models and methods of two-
stage location—allocation and multiplex partitioning of continuous sets. A numerical
solution scheme for the formulated problems has been presented. Thus, optimization
models similar to (1)—(4) have the advantage of providing exact solutions for the
problems with clearly defined objectives and constraints. The proposed approach
makes it possible to comprehensively solve the problems of locating facilities in
emergency logistics systems and distributing resources during their transportation
from the sources to the final consumers, thereby strengthening the synergistic effect
of managerial decision-making. The presented mathematical models are suitable for
describing evacuation processes with the organization of collection, intermediate, and
reception points; for multi-stage processes of distributing and delivering essential
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goods from existing warehouses through distribution centers to areas affected by
man-made emergencies; and for other logistics processes.

However, to ensure controllability, these models often simplify the complexity of
scenarios by quantitatively estimating uncertainty and relying on strong assumptions
about human behavior. These limitations can be overcome using machine learning
and simulation methods, which provide enhanced realism in modeling disaster sce-
narios [15]. The most important directions for future research include:

« rapid adaptation to environmental changes based on online learning and rein-
forcement learning (RL);

« accurate forecasting under complex conditions with additional optimization
frameworks;

« multi-objective optimization for balancing conflicting priorities and achieving
fair outcomes;

« application of probabilistic risk analysis and stochastic optimization methods
to quantify risk and develop robust mitigation strategies.
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YAOCKOHANEHHA MATEMATUYHUX MOJENEW OBOETAMNHWUX NPOLIECIB PO3MOMINY PECYPCIB
B CUCTEMAX EKCTPEHOI NNIOTICTUKWU
Groce b., [3to06a C., KopswkiHa J1., JlybeHeub /.

AHorTauis. Y cTaTtTi posrnsgaetbes npobriema onTuMisali posmilLeHHs 06’eKTiB i po3noginy matepianbHUX pecyp-
CiB Y KOHTEKCTI NOriCTUKM HaZ3BUYalHMX CUTYaLiin. AKTyanbHICTb JOCRIMXeHHs 3yMOBIEHa 3pOCTaHHAM YacToTW Npupo-
OHUWX Ta TEXHOreHHUX KaTacTpo, Lo BUMarae epekTMBHOMO NnaHyBaHHS 3axX0fiB pearyBaHHs 3a4/1 3MEHLUEHHs BTpaT
i 3arpo3 4ns xnTTs HaceneHHs. OCHOBHa yBara NPUAINSETHCA YAOCKOHANEHHI0 MaTEMATUYHUX MOLENEN | MeTogiB, siki
[03BONSOTh MiABULLMTI €PEKTUBHICTb NOFMCTUYHMX OnepaLin.

3anponoHoBaHO HOBMI MiAXi4 LWO4O MaTEMaTWYHOTO MOAEMNOBaHHA GaraToeTanHuX NOTiCTUYHMX NPOLECIB, SKMiA

noeaHye ifei oNTUMasnbHOro PO3MILLEHHS MPOMBKHUX PO3MOZINbYUX LIEHTPIB Ta MyMbTUMIEKCHOrO 30HYBaHHS TEPUTOPIN.
ICHyto4i MoZeni 3afay po3TallyBaHHS MOTiCTUYHUX LEHTPIB 3 ABOETANHUM PO3NOLINIOM Pecypcy YAOCKOHANEHO 3aBasKu
3aKPINAEHHKD KOXHOMO KiHLEBOrO CrMoXwuBava 3a Kifbkoma Hanbrk4yMmin npOMiKHUMU PO3MNOLINbYMMM LIEHTpaMK, L0
NiaBULLYE HaAiIMHICTb HagaHHs nocnyr noTpebytounm. LieHTpamu, Lo po3MiLLytoTbCs, MOXYTb ByT abo nyHKTM nep-
BMHHOrO 360py HaceneHHs Ha BUNaZoK Moro eBakyaLii 3 TepuTopii Haa3BKUYaHOI cuTyalil, abo NyHKTU po3noainy i Bu-
Aadi npeaMeTiB NepLUoi HeoOXiAHOCTI, Siki HAAXOOATL 3i CKMaaiB AepKaBHOrO pesepBy abo iHWKX xabiB i pO3NoaINAThb-
CA MiX MPOMDKHUMM LieHTpaMn 4515 4OCTaBKU MeLLKaHUSM NoCcTpaxaarnoro perioHy. Po3pobnenuit mateMatuyHui ana-
paT [03BOIISE BU3HAYATW ONTUMANbHY KiNbKICTb, MICTKICTb i MiCLS PO3TALLYBAHHSA MPOMDKHUX PO3MOAINbYMX LIEHTPIB, a
TaKOX paLioHanbHO OpraHisoByBaTy MOMCTUYHI MpoLeck Ta eqhekTUBHO PO3NOSINATA PeCypcu MiX yCiMa ydacHUKamu
NOTICTUYHOrO NaHuora.
MatematuuHe 3abe3neyeHHs ChopMynbOBaHNX 3aday FPYHTYETbCS Ha Teopii HenepepBHUX 3aaay ONTUManbHOrO po3-
BUTTS MHOXMH, Teopii 4BOICTOCTI, MeToAax NiHIMHOTO NporpaMyBaHHS TPAHCMOPTHOMO TUMY, @ TaKOX Cy4acHUX anropuT-
Max HeauepeHLinoBaHoi onTuMisalyii. 3anponoHOBAHO YNCENbHY CXeMy PO3B'A3aHHS 3agay ONTUMAanbHOro Po3noginy
MOTOKIB y 6araTopiBHEBWX TPAHCMIOPTHO-NOMCTUYHMX MEPEXAX.

[pencraBneHi pe3ynbTaTi MatoTb NPUKIagHe 3HaYeHHS N1 NnaHyBaHHS TOTCTUYHUX onepaLin y Haa3BUYanHUX
cuTyaUisx, 3okpema ans eqekTUBHOMO PO3MILLEHHS NYHKTIB MEAMYHOI Ta ryMaHiTapHOI AOMNOMOrK, Po3noginy pecypcis i
eBaKyauii HaceneHHs. 3anponoHOBaHWA NiaXia [O3BONSE peanisyBaT KOMMAEKCHY CUCTEMY MiZTPUMKM MPUAHSATTS
ynpaBniHCbKWX pilLeHb Y cdepi KPM30BOro pearyBaHHsi, Moxe ByTi BUKOPUCTaHWU ANs BUPILLEHHS WMPOKOTO Kona CTpa-
TErYHMX 3aBAaHb y BUPOOHWUIN, CoLianbHili Ta EKOHOMIYHIN chepax, 3abeaneyyoun epekTUBHY NIATPUMKY NPUAHSATTS
YNPaBIiHCLKWX PiLlieHb Y CKIagHWX JOMCTUYHNX CUCTEMaX.

KnioyoBi cnoBa: onTumisaLjs, TpaHCMOPTHO-MOMCTUYHA cucTema, baraToeTanHuii po3nogin, MynbTUNNEKCHe Po3-
OUTTS KOHTUHYaNbHOT MHOXMWHK, PO3MILLEHHS 06’ €KTIB, CUCTEMHWIA NiAXiA,
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