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Abstract. The paper addresses the problem of optimizing the placement of facilities and the distribution of material 
resources in the context of emergency logistics. The relevance of the research is driven by the increasing frequency of 
natural and man-made disasters, which necessitates effective response planning to mitigate losses and threats to hu-
man life. The focus is on the development of mathematical models and methods aimed at improving the efficiency of 
logistical operations. 

A new approach to mathematical modeling of multi-stage logistics processes is proposed, which combines the ide-
as of optimal placement of intermediate distribution centers and multiplex territorial zoning. Existing models of facility 
location problems with two-stage resource distribution have been improved by assigning each end consumer to several 
nearest intermediate distribution centers, which increases the reliability of service delivery to those in need. The facilities 
to be located may serve either as primary collection points for the population in case of evacuation from an emergency 
area, or as distribution and supply points for essential goods delivered from state reserve warehouses or other hubs and 
then distributed among intermediate centers for delivery to residents of the affected region. 

The mathematical formulation is based on the theory of continuous optimal partitioning problems, duality theory, lin-
ear programming methods of the transportation type, and modern algorithms of nonsmooth (derivative-free) optimization. 
A numerical scheme is proposed for solving optimal flow distribution problems in multi-level transport and logistics net-
works. 

The results have practical significance for planning logistics operations in emergency situations, particularly for the 
effective location of medical and humanitarian aid points, resource allocation, and population evacuation. The proposed 
approach enables the implementation of a comprehensive decision support system for crisis response management and 
can be applied to a wide range of strategic problems in industrial, social, and economic domains, providing effective 
support for decision-making in complex logistics systems. 

Keywords: optimization, transport and logistics system, multi-stage distribution, decomposition of a continuous set, 
system approach 

 
1. Introduction 

The relevance of improving existing and developing new mathematical models 
and optimization methods for facility location and distribution of material resources 
in emergency logistics is driven by the increasing number of natural and man-made 
disasters. Immediate response to emergencies is the key to mitigating these threats 
and losses. Since response time depends on the number and location of emergency 
service facilities, the problem of determining their optimal number and best location 
has strategic importance and attracts great interest from researchers [13]. 

The high uncertainty of events, dynamic environmental conditions, and other fac-
tors require a systematic approach to planning preventive measures and prompt re-
sponse to emergency situations, involving methods of mathematical and computer 
modeling. 

The object of research is multi-stage logistics processes in emergency situations. 
The subject of research is models and methods of optimal distribution of emergency 
logistics system units and distribution of material flows between them. 

The purpose of the study is to improve the efficiency of logistics operations and 
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emergency response through mathematical and computer modeling of rational distri-
bution of transport and material resources in emergency logistics systems. 

Mathematical models of two-stage evacuation processes are presented in [2]. 
These models consider the optimal distribution of human flows in a transport system 
with two-level units – first-stage centers (medical stations receiving citizens from af-
fected areas) and second-stage centers (specialized emergency service units providing 
further assistance to the evacuated population). It was found that the mathematical 
description of such processes corresponds to the problems of optimal partitioning of 
continuous sets with the placement of subset centers and additional connections. [3]. 
The universality of this class of problems was demonstrated in [2] through its appli-
cation not only to evacuation processes with assembly, intermediate, and reception 
points but also to processes related to delivering essential goods to the affected popu-
lation. In such cases, it is necessary to determine the volume of material flows and 
logistics connections between state reserve warehouses, distribution centers, and final 
delivery points in disaster areas. In this study, the above models and their implemen-
tation methods are generalized to the case where residents of the affected area can be 
served by several nearest centers. 

Many problems in emergency response planning are presented as classical opti-
mization problems, including resource distribution, facility location, vehicle routing, 
and optimal control of emerging processes. A comprehensive review of scientific 
works published in the first 20 years of this century on humanitarian logistics and op-
timization problems related to evacuation planning, route finding, and shelter location 
during urban emergencies, intentional actions, or natural disasters is given in [1]. 

We present an overview of research over the past decade, focusing on existing 
approaches to modeling two-stage evacuation or distribution processes. For example, 
[4] introduces a two-stage model for reliable facility location when some facilities 
may be disrupted, e.g., by a natural disaster. Planning is carried out in two stages: a 
robust network of service centers and their assigned clients is designed in the proac-
tive phase, while in the reactive phase, when a service center is destroyed, its clients 
are reassigned to other available facilities. This model is based on the classical p-
center problem. In [5], the authors present the results of their 15-year research on 
modeling and developing solution methods for two-stage facility location problems 
without capacity constraints. The industrial application in freight transportation, 
which initially sparked the authors’ interest in this problem, led to the study of its 
generalization to the case with modular costs. 

A significant part of the mathematical description of two-stage location–
allocation processes consist of stochastic models. In [6], a new class of two-stage sto-
chastic facility location problems with unsecured facilities is introduced, taking into 
account the “nervousness” of the system that may arise due to decision-making under 
uncertainty. The authors attempt to address a practical issue: adaptive uncertainty-
aware distribution decisions at the second stage may significantly deviate from the 
corresponding first-stage allocation decisions. To solve such models, exact scenario 
decomposition algorithms of the Benders type have been developed. The facility lo-
cation problem in which customer demand is highly uncertain and information about 
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the distribution of uncertainty is unavailable is considered in [7]. A two-stage sto-
chastic mixed-integer programming problem is formulated here: optimal facility se-
lection at the first stage and optimal operation decisions for each facility at the second 
stage. 

In [8], two classes of multi-objective two-stage stochastic programs on finite 
probability spaces with multidimensional risk constraints are examined. The first-
stage problem includes a multidimensional stochastic benchmarking constraint based 
on a vector random variable. The vector random represents multiple, possibly sto-
chastic, conflicting performance indicators that are associated with the decisions of 
the other stage. 

The study [9] develops a multi-objective stochastic programming model to en-
hance disaster preparedness and response, with particular focus on the critical first 72 
hours after earthquakes. The aim is to optimize the distribution of resources, tempo-
rary medical centers, and medical personnel for effective life-saving efforts. Dynamic 
and stochastic programming, as well as discrete Markov chains, are employed here. 

The work [10] is devoted to the optimization of resource distribution during natu-
ral disasters accompanied by the emergence of secondary hazards. A two-stage sto-
chastic optimization model is proposed to simulate random occurrences of multiple 
disasters in order to optimize the distribution of rescue teams, warehouses, and medi-
cal resources. 

In [11], the problem of locating multiproduct facilities in a two-stage supply chain 
is studied, including the determination of warehouse (distribution center) locations, 
their capacities, and optimization of product flows from plants to warehouses and 
customers. Plants are assumed to have limited production capacities, while potential 
warehouses offer several possible capacity levels to choose from. The authors intro-
duce two Mixed-Integer Linear Programming models, aiming to minimize fixed 
warehouse opening costs and transportation costs. In the first model, warehouse ca-
pacity is defined by the maximum number of each product that can be stored, while 
in the second it is defined by warehouse size (volume). 

In [12], a multi-period maximal covering location model for medical services is 
evaluated, which takes into account the inter-service dimension as well as equitable 
access. A two-stage optimization strategy is applied: at the first stage, facilities are 
located to maximize covered demand, while at the second stage patients are allocated 
to the maximum-coverage facilities over several time periods. The facility location 
problem with uncertain customer demand is studied in [13]. The authors propose a 
two-stage formulation of this problem with mixed-integer "wait-and-see" decisions 
and discrete uncertainty in the objective function. 

One of the most widely used research approaches to solving the emergency facili-
ty location problem is its formulation as a discrete coverage-based emergency facility 
location model [1, 16]. In [1], a comprehensive review of this problem is presented, 
including mathematical models, their extensions, and applications. Solution methods 
and promising future research directions based on coverage models are also dis-
cussed. In [16], the problem of optimal placement of rescue facilities with minimum 
service time to the farthest client in a given region is examined. The mathematical 
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models are discrete-continuous multiple-coverage problems of a bounded set in E2 
with minimum-radius circles. The centers of the circles forming the coverage are lo-
cated on a finite set of candidate locations. The objective is to minimize service time 
even when the center closest to the affected resident is unable (for certain reasons) to 
provide the required assistance. 

The article [14] presents a bi-objective model for determining the location of 
emergency logistics facilities, considering location costs, human resource planning, 
demand uncertainty, and road conditions. 

A comprehensive methodological review of research related to the use of mathe-
matical modeling, optimization, and machine learning methods in emergency re-
sponse planning is provided in [15]. Machine learning offers an adaptive, data-driven 
approach to disaster response. The machine learning and reinforcement learning (RL) 
are particularly effective in problems requiring real-time adaptation compared to 
transportation optimization models. However, the implementation of machine learn-
ing in disaster response faces challenges such as data availability and quality, inter-
pretability of learned models, and generalization of solutions to different disaster sce-
narios. 

 
2. Methods 

In this work, the object of study is the two-stage distribution of material flows in 
emergency logistics systems, whether for population evacuation from a disaster-affected 
area or delivery of essential goods from state reserve warehouses to residents through 
intermediate collection or distribution centers. As shown in [2], the mathematical 
framework describing such models is the same – optimal partitioning problems of con-
tinuous sets with additional constraints. Therefore, we will use the term "i-th stage cen-
ters" for the respective units of the logistics system. Unlike the models proposed in [2, 
3], in this work, it is assumed that residents of the affected area may be served by several 
nearest centers. Thus, we generalize the developed mathematical models of two-stage 
location/distribution to the case of multiplex zoning of the territory [17, 18]. 

We formulate several assumptions regarding the input data. We assume that: 
1. The logistics centers perform the functions of distributing emergency relief mate-

rials and planning human resources. The construction and maintenance costs of each in-
termediate logistics center are considered known and remain constant throughout the 
studied period. 

2. The time required to move between demand points and centers, as well as be-
tween the two stages of centers, is directly proportional to the distance. 

3. The cost of establishing and equipping the second-stage centers is assumed to be 
known for all units. 

4. The distance from each logistics center to each demand point is considered known 
and does not change over time. 

5. Each logistics center, whether it is a final collection center for the affected popula-
tion or a state reserve warehouse, can accumulate or direct human or material resources 
from/to several intermediate points. Each intermediate distribution center is assigned a 
specific zone of the territory affected by the emergency for servicing. At the same time, 
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it is assumed that residents may use the services of any of the k nearest centers, which е 
ensures a flexible and reliable logistics chain. 

6. The territory affected by the emergency is densely populated, and the distribution 
of residents, and thus the demand for emergency aid, can be described analytically by a 
certain function. 

7. All resources accumulated in an intermediate distribution center must be delivered 
to the final recipient. 

Thus, it provides for: 1) multiplex zoning of the territory, i.e. overlapping zones in 
case the nearest center is unable to provide the customer with the service; 2) two-stage 
resource distribution; 3) optimal placement of intermediate distribution centers. Let us 
now turn to the mathematical description of the above processes. 

Let Ω be the territory that has been damaged (can be damaged) as a result of an 
emergency event, m2; ˆ ΩΩ⊆  be the safe territory where intermediate distribution 
centers can be located, m2; ρ(x) be the function describing the distribution of re-
sources at point x ∈ Ω, resource units/m2; N and M are the number of intermediate 
and final points; S is the total amount of resource in the territory of Ω, resource units; 

r
iτ  is the i-th center of the r-th stage, and the centers of the 1-st stage will be consid-

ered intermediate; r
ib  is its capacity (capacity, the maximum amount of services that 

the respective centers can offer), r=I,II of the resource units; ( ),I I
i ic x τ  is the cost of 

delivering a resource from the point x∈Ω to the center I
iτ , UAH/unit of resource; 

( ),  I I
i ic x τ is the cost of transporting the resource from I

iτ to ,II
jτ  UAH/unit of re-

source; ( ),II I II
ij i jc τ τ  is the cost of organizing a transportation from  center I

iτ  до II
jτ , 

UAH/unit of resource;  I
ia is the cost of organizing an intermediate center at the point 

  I
iτ  II

jτ , UAH/unit of resource;   II
ja  are the fixed organizational costs of the center 

II
jτ , UAH/unit of resource; ijν  is the amount of resource transported from I

iτ  to II
jτ  

(or in the opposite direction), unit of resource, 1, ; 1,i N j M= = . 

It is required to place the centers 1 , ,I I
Nτ τ…  from Ω̂ , to divide the given region 

into zones Ω ,  1,
l

l Lσ = , which cover customers that have the same k nearest service 

(intermediate distribution) centers and volumes of transportation { }11, , NMν ν ν= … , 
for which the total cost of transporting resources and the organizational expenses for 
opening and equipping the centers were minimized. 

Here, { }1   , , ,l l
l kp p pσ = …  is a set of indices of centers associated with the subset 

Ω
lσ . The partitioning of the region Ω and the determination of resource flows in the 

logistics network must be carried out taking into account the capacities of all sec-
ond-stage centers II

jτ . 
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For the mathematical formulation of the problem, we introduce the following no-
tation: Ν̂  = {1,2,…,N} – the set of all center indices; ˆ( , )kΜ Ν  – the set of all k-
element subsets of the set Ν̂ , | ˆ( , )kΜ Ν | = { }1 2;  , , , ,  1,k l l l

N l kC L p p p l Lσ= = … = , – el-

ements of the set ˆ( , )kΜ Ν . 

Definition 1. A collection of subsets { }1 2
, , ,

Lσ σ σΩ Ω … Ω  from 2Ω E⊂  is called a 
partition of the k-th order of the set Ω to its subsets 

1 2
, , ,

Lσ σ σΩ Ω … Ω , if 
 

( )
1

, ;ˆ,   0;   , ( ), , , 1,
l i m

L

i m
l

mes k i m i m Lσ σ σ σ σ
=
Ω =Ω Ω ∩Ω = ∈Μ Ν ≠ =  

 
where mes(⋅) denotes the measure of a set. The subsets  

jσΩ are called subsets of the 

k-th order of the set Ω. 
Let ,

ΩΣN k denote the class of all possible partitions of k-th order of Ω into its sub-
sets 

1
Ω , ,Ω

Lσ σ… : 
 

{ }{
}

1
,

Ω
1

Σ Ω , ,Ω :   Ω,

ˆ(Ω Ω ) 0,   ,  ( , ),  ,    , 1, .

L l

i j

L
N k

l

l jmes k i j i j L

σ σ σ

σ σ

ω

σ σ

=
= = … Ω =

= ∈Μ Ν =∩ ≠


 

 
The mathematical model of two-stage optimal distribution of material resources 

with the placement of intermediate service centers and the zoning of the emergency 
area is formulated as follows: 

Problem 1: 
 

( ), , ,IF minω τ ν →       (1) 

 

( ) ( )( ) ( )

( )( )

1
1

2
1 1

1, , , 

, ,

ll

L
I I I

i i
l i

N M
II I II II
ij i j j ij

i j

F c x a x dx
k

c a

σ σ
ω τ ν β τ ρ

β τ τ ν

= ∈Ω

= =

= + +

+ +

∑∑ ∫

∑∑
 

on condition of: 
 

( )
:

1 1
, 1, ,

ll i l

L M
l
i ij

l j
x dx i N

σσ

γ ρ ν

∈
= =Ω

= =∑ ∑∫    (2) 
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1
, 1, ,

N
II

ij j
i

b j Mν
=

= =∑      (3) 

,
Ω

ˆΣ , , .N k I N
NMRω ν τ+∈ ∈ ∈Ω     (4) 

 
Here 1{ ,..., }I I I

Nτ τ τ= , ˆ  I
iτ ∈Ω ;  (1) (2)( , )x x x= ∈Ω ; )( , I

ic x τ , 1,i N=  are bounded 
functions defined on    Ω×Ω  function. The function ( )xρ  is bounded and nonnegative 
on Ω ; , 0,  0  II I II

j i ja a b≥ > are given constants, 1,i N= , 1,j M= ; 1 2, 0,β β ≥  

2 2
1 2 0 β β+ ≠  are given parameters that specify the priority of the terms and account 

for their normalization and dimensionlessness; ,
ΩΣN k  is the class of all possible multi-

plex partitions of Ω; NMR+  and  the space of (N×M) nonnegative real matrices. 

The coefficients l
iγ  determine the share of the service market that the center iτ  

occupies in the territory Ω
lσ  among the objects 

1 2
}{ ,  , , l l l

kj j jτ τ τ…  that serve this terri-

tory, such that for all 1,i N= , 1,l L= : 
 

1 2
... 1,  0 1,   .l l l

k

l l l l
i lj j j iγ γ γ γ σ+ + + = ≤ ≤ ∈    (5) 

 
If we assume that the distribution of demand for services over the entire region Ω 

is proportional to the capacities of the first-stage centers I
ib , so, it will be for all 

1,l L=  and for all it will be 1,i N= , li σ∈ , are given by the following expression: 

:
/

l

l I I
i i q

q q
b b

σ
γ

∈
= ∑ . If the demand is distributed evenly among the centers, then 

1 ,l
i k
γ =  it will be, for all i and l. 

The problems (1) – (4) for any fixed vector I Nτ ∈Ω  are solvable if the following 
conditions are met: 

1) ( )S x dxρ
Ω

= ∫ ;  

2) the capacities of the centers at the first stage are equal to I
ib , 1,i N= ; 

3) the following conditions are met: 
 

0 ,  , 1, , 1,I II
i jb b S i N j M≤ ≤ = = ; 

1 1

N M
I II
i j

i j
b b S

= =
= =∑ ∑ .   (6) 

 

The validity of the statement can be easily shown by analogy with the proof of the 
lemma in [19]. 
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The method of solving the Problem A assumes its representation in terms of char-
acteristic vector-functions of a partition of the k-th order of the set Ω. 

Definition 2. The characteristic vector-function of a partition 
{ }1

,..., , ,
l Lσ σ σω = Ω Ω … Ω  of the set Ω of the k-th order is called the vector-function 

defined ( ) ( ) ( ) ( )( )1 , , , ,l Lχ χ χ χ⋅ = ⋅ … ⋅ … ⋅ , determined by the formula: a.e. for Ωx∈  

 

( )
1,  ,

0,  Ω \ ,   1, . 
l

l
l

x
x

x l L

σ

σ
χ

∈Ω= 
∈ Ω =  

 
To write the Problems (1) – (4) in terms of characteristic partitioning functions, 

we use the vector function ( )λ ⋅ , which we assume to be unknown, and the NL-
dimensional vector with coordinates  

 
1,  if ,
0 in the other case,

ll
i

i σ
λ

∈
= 


  1, ,i N=  1, ,l L=  

 
where { }1,...,l l

l kj jσ =  the set of indices of centers, associated with 
lσΩ . 

Obviously, 1
N l

jj kλ= =∑  for all 1,l L= . The vector 1( , , )l l l
Nλ λ λ= …  defines the 

indicators of the indices of the centers of the set lσ  with Ν  and, therefore, will be 
used as a template for the component ( )l xχ  of the characteristic partitioning vector 
function.  

The problem A is written in the following equivalent form. 
Problem B: 

( )
1 ˆ( ( ), , )

( ), ,
I k N

NM

I

R
min I

χ τ ν
χ τ ν

+⋅ ∈Γ ×Ω ×
⋅ , 

where 

( ) ( )

( )

1

1 1

2
1 1

( ) ( ) (, , ( ,  ) ( ) )

( , ,)

L N
I I I l

i i i l
l i

N M
II I II II
ij i j j ij

i j

I c x a x x dx
k

c a

βχ τ ν τ λ ρ χ

β τ τ ν

Ω
= =

= =

= + +

+ +

⋅ ∑∑∫

∑∑
 

on conditions: 

( ) ( )
1 1

, 1, ,
L M

l l
i i l ij

l j
x x dx i Nγ λ χ ρ ν

= =Ω

= =∑ ∑∫     (7) 

1
, 1, ,

N
II

ij j
i

b j Mν
=

= =∑      (8) 
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( ){ ( ) ( )1
1

:  0 1,   1, ,   1a.e. for  Ω
L

k
l l

l
x l L x xχ χ χ

=

Γ = ⋅ = ∨ = = ∈ 


∑ . 

 

3. Theoretical part 
To solve the Problem B, its LP-relaxation is performed, where the components 
( )lχ ⋅ , 1,l L= , are allowed to take values in the interval [0, 1]. 
Problem C: 

( )
1 ˆ( ( ), , )

( ), , ,
I k N

NM

I

R
min I

χ τ ν
χ τ ν

+⋅ ∈Γ ×Ω ×
⋅

 
 
on conditions (7), (8), where  

 
( ){2 1( ) ( ), , ( ), , ( ) : 0 ( ) 1,k

l L l xχ χ χ χ χΓ = ⋅ = ⋅ … ⋅ … ⋅ ≤ ≤  

( ) }11, ;  1  a.e. for L
lll L x xχ== = ∈Ω∑ . 

 
To solve the Problem C, we make use of elements of duality theory. The La-

grange functional of this problem can be written in the following form: 
 

( ) ( )( ) ( ) ( )1
0

1 1
( ( ), , ),( ( ), , ) ,

L N
I I I l l

i i i i i l
l i

W v c x a x x dx
k
βχ τ ψ ψ η τ γ ψ λ ρ χ

= =Ω

 ⋅ ⋅ = + + + 
 

∑∑∫  

( )( )2
1 1

( , )
N M

II I II II
ij i j j j i ij

i j
c a vβ τ τ η ψ

= =
+ + − −∑∑ ( ) ( )0

1 1
1 .

M L
II

j j l
j l

b x x dxη ψ χ
= =Ω

 
+ + −  

 
∑ ∑∫

 
 

The functional ( )0( ( ), , ),( ( ), , )IW vχ τ ψ ψ η⋅ ⋅  is defined on the Cartesian product 

( ) ( )ˆΛ N N M
NMR R R+×Ω × × Φ× × , where 

 
( ) ( ) ( ){ }2Λ : 0 1 Ω,  1, ;L

lL x x l Lχ χ= ⋅ ∈ Ω ≤ ≤ ∀ ∈ =  ( ){ }0 0 2:   ( ) Lψ ψΦ = ⋅ ∈ Ω . 

 
The problem which is dual to the problem C is formulated as follows: 
 

( )
( )0

0
( ), ,

( ), , ,
N MR R

H max
ψ ψ η

ψ ψ η
⋅ ∈Φ× ×

⋅ →     (9) 

( ) ( )0 0ˆ( , , ) Λ
( ), , ( ( ), , ),( ( ), , )

I N
NM

I

v R
H min W v

χ τ
ψ ψ η χ τ ψ ψ η

+∈ ×Ω ×
⋅ = ⋅ ⋅ . 

Let all the parameters in W, except for χ(⋅), be admissible and fixed. Then  
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( )0
( ) Λ

( ( ), , ),( ( ), , )Imin W v
χ

χ τ ψ ψ η
⋅ ∈

⋅ ⋅ =  

( )
1

2 0
1 1

( ( ( , ) ) )
N M

II I II II II
ij i j j j i ij j j

i

M

j j
c a v b x dxβ τ τ η ψ η ψ

== = Ω

= + − − + − +∑∑ ∑ ∫  

( ) ( )1
0

0 ( ) 11 1
( , ) ( ) .( )

l

L N
I l l
i i i i i l

xl i
min c x a x x x dx

kχ

β τ γ ψ λ ρ ψ χ
≤ ≤= =Ω

  + + + +  
   

∑ ∑∫
 

 

We shall further use the notation: 1( , ) ( , ) .( ) /I I I
i i i id x c x a kτ β τ= +  

The minimal value of the latter term is attained at the function χ̂ , which components 
almost everywhere for x  with Ω  satisfy the conditions: for 1,l L=  

 

( )

[ ]

0
1

 
0

1

0
1

1, if ( ,  ) ( ) ( ) 0,

ˆ 0, if ( ,  ) ( ) ( ) 0,
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If in this inequality and in (10) ( ) ( )0 0ˆ ,x xψ ψ=  then the following equality holds: 
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1
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L

l
l
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=
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This implies that among the components of the vector ( )ˆ xχ  in (10) there is only 

one unit component, let its number be l and then: 
 

( )

( )

( )

0

 

0
1, 1

1
ˆ1, if ( , ( ) ( )         

ˆ
ˆ     min ( , ( ) ( ),

0  otherwise,                                           ,

)

  .

)

1

I l l
i i i i i

Nl I s s
i

L

N

i

i i i i
s i

d x x x

x
d x x x

l L

τ γ ψ λ ρ ψ

χ
τ γ ψ λ ρ ψ

=

= =


+ + =


= 

= + +

 ∀ =

∑

∑

   (11) 

 
By substituting (11) into the expression for  W  when 0 0ˆ( ) ( ),ψ ψ⋅ = ⋅  we obtain: 

( )( )0
( ) Λ

ˆ( ( ), , ), ( ), ,Imin W v
χ

χ τ ψ ψ η
⋅ ∈

⋅ ⋅ =  
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1
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Thus, the problem dual to problem C, takes the form: 
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Now let us assume that all parameters except v  are fixed in the problem (12). 
Then: 
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The values of *  ijv  which achieve the minimum value for ijv  in the function 

( )( , ),( , )IW vτ ψ η  satisfy the condition: 
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Each inequity from the following system 
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Thus, by substituting such expressions into W, the problem (12) takes the form: 
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where  
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Substituting the expression for ( , )I

i id x τ  and avoiding the use of index indicators 

that form the combination sσ , 1,s L= , we can write the function ( , )IG τ ψ  as fol-
lows: 
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Thus, taking into account the non-negativity of the function ( )xρ , the characteris-

tic functions of the subsets * ,  1,
l

l LσΩ = , which form the optimal multiplex partition of 
Ω in the problem B, are given by the following formula: for almost everywhere for 
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where ( 1̂ ˆ,...,  Nτ τ , 1ˆ ˆ,...,  )Nψ ψ  is the solution of the problem (13). To identify the links 
between the centers of the first and second stages – the values of  

îjν  of resource 
flows between them, the following linear programming problem of the transport type 
should be solved: 
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II
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At the core of the numerical algorithm for solving the problem lies the following 

scheme: 
1. We solve the problem (13) using any method with the help of Shor’s r-

algorithm and determine the optimal location of the first-stage centers and the charac-
teristic functions of the subsets that form the optimal multiplex partition of the set Ω. 
Thus, each first-stage center is assigned its service area, taking into account that the 
zones may overlap up to k times. 

2. We calculate the capacities of the first-stage centers based on the defined ser-
vice areas, considering the multiplicity of the partition. 

3. We solve the problems (15)–(17) using the potentials method and determine 
the optimal values of the resource flows between the first- and second-stage centers. 

4. We visualize the calculation results. 
 

4. Results and discussion 
To verify the correctness of the constructed models and the developed algorithms, a 

series of computational experiments was conducted. Firstly, particular cases of the for-
mulated problems were solved, where the service areas are monotonically assigned to 
each intermediate center. In this case, the obtained results are identical to those presented 
in [17, 19]. Secondly, two-stage resource distribution problems were solved, where the 
centers are fixed but overlapping of their service areas is allowed. The results confirm 
the adequacy of the mathematical description of such processes using the developed 
model (1) – (4). Thus, Figure 1 presents a visualization of the optimal two-stage distribu-
tion of a total resource amount of 100 units, uniformly distributed over a square territory, 
among N intermediate centers (collecting the resource) and M destination centers. The 
amount of collected resource and the amount directed to the second-stage centers are 
indicated. The capacity of each second-stage center, along with its number, is shown in 
red. The coordinates of the intermediate centers are predetermined. The zones are de-
fined for monopoly servicing (k = 1). Next to the number of each first-stage center, the 
amount of collected resource is given in parentheses (blue color). The figure captions 
indicate the values of the components of the objective functional: costs at the first and 
second stages of distribution and delivery of the resource, as well as their sum. 

As can be seen, the capacities of certain intermediate centers, as well as the resource 
flows between the first- and second-stage centers, may sometimes turn out to be too 
small. Their practical implementation may be associated with certain difficulties. For 
instance, servicing such centers and flows is not rational from the standpoint of using 
transportation means or involving human resources. To prevent such situations, two con-
secutive procedures for improving the scheme of two-stage rational resource distribution 
are proposed. 

The first procedure is the exclusion from consideration of intermediate centers 
which, according to the optimal partitioning of the territory, turn out to be low-
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capacity. Their resources are then redistributed among the remaining centers, for 
which the formulated problem is solved again. The second procedure is developed to 
avoid small resource flows between the first- and second-stage centers. It is assumed 
that the second-stage centers can accept somewhat more resources than initially spec-
ified. Their capacities are artificially increased by a small value. This increment is 
determined by a lower bound on the amount of resource flow between the first- and 
second-stage centers (i.e., the minimum amount of resource transportation worth per-
forming from the perspective of process organization). 

  

 
 

a) N = 7, M = 2    b) N = 15, M = 4 
 

Figure 1 – Solution of the resource flow optimization problem with N fixed  
intermediate centers and M second-stage centers 

 
A fictitious intermediate center is introduced with a capacity equal to the total in-

crement of the capacities of the second-stage centers, and with a transportation cost 
that significantly exceeds the total cost of all actual shipments. The extended trans-
portation problem is then solved. Figure 2 shows the result of applying the described 
rationalization procedures to the two-stage resource distribution process for the opti-
mal solutions presented in Figure 1. 

In the optimal partition in Figure 1a, the service zone of the 6th center turned out 
to be very small, with the amount of collected resource equal to 0.06 units. After ex-
cluding this center from consideration, the obtained optimal partition is shown in 
Figure 2a. At the same time, the value of the objective functional is increased by only 
0.002% – from 991.09 to 991.11. In Figure 2b, a rational partition of the territory into 
service zones is shown for ten out of the fifteen centers presented in Figure 1b – cen-
ters 6, 9, 13, 14, and 15 were found to be irrational for use and were excluded from 
consideration. Given a 10% increment of the capacities of the second-stage centers, 
eleven active links between the centers of the two stages were obtained. 
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a) N = 7, M = 2     b) N = 15, M = 4 
 

Figure 2 – Result of rationalizing the scheme of connections between first- and second-stage centers 
 
Compared with the connections presented in Figure 1b, in Figure 2b there are no 

flows of 0.04, 0.09, or 0.89 units of resource. The total costs due to the redistribution 
of resource flows increased only slightly – from 857.57 to 858.23 conventional units, 
which is almost 0.08%. Thus, the calculation results confirm the expediency of apply-
ing rationalization procedures to the optimal solutions of two-stage location–
allocation problems. 

 

5. Conclusion 
Mathematical models, methods, and algorithms have been developed to determine 

resource flows in multi-level transport and logistics systems where a resource is con-
tinuously distributed over a given territory, and intermediate logistics centers are lo-
cated within that territory. It is assumed that each consumer of the service is assigned 
to several of the nearest intermediate centers to increase the reliability of service. The 
developed mathematical framework is a symbiosis of models and methods of two-
stage location–allocation and multiplex partitioning of continuous sets. A numerical 
solution scheme for the formulated problems has been presented. Thus, optimization 
models similar to (1)–(4) have the advantage of providing exact solutions for the 
problems with clearly defined objectives and constraints. The proposed approach 
makes it possible to comprehensively solve the problems of locating facilities in 
emergency logistics systems and distributing resources during their transportation 
from the sources to the final consumers, thereby strengthening the synergistic effect 
of managerial decision-making. The presented mathematical models are suitable for 
describing evacuation processes with the organization of collection, intermediate, and 
reception points; for multi-stage processes of distributing and delivering essential 
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goods from existing warehouses through distribution centers to areas affected by 
man-made emergencies; and for other logistics processes. 

However, to ensure controllability, these models often simplify the complexity of 
scenarios by quantitatively estimating uncertainty and relying on strong assumptions 
about human behavior. These limitations can be overcome using machine learning 
and simulation methods, which provide enhanced realism in modeling disaster sce-
narios [15]. The most important directions for future research include: 

• rapid adaptation to environmental changes based on online learning and rein-
forcement learning (RL); 

• accurate forecasting under complex conditions with additional optimization 
frameworks; 

• multi-objective optimization for balancing conflicting priorities and achieving 
fair outcomes; 

• application of probabilistic risk analysis and stochastic optimization methods 
to quantify risk and develop robust mitigation strategies. 
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УДОСКОНАЛЕННЯ МАТЕМАТИЧНИХ МОДЕЛЕЙ ДВОЕТАПНИХ ПРОЦЕСІВ РОЗПОДІЛУ РЕСУРСІВ  
В СИСТЕМАХ ЕКСТРЕНОЇ ЛОГІСТИКИ 
Блюсс Б., Дзюба С., Коряшкіна Л., Лубенець Д. 
 

Анотація. У статті розглядається проблема оптимізації розміщення об’єктів і розподілу матеріальних ресур-
сів у контексті логістики надзвичайних ситуацій. Актуальність дослідження зумовлена зростанням частоти приро-
дних та техногенних катастроф, що вимагає ефективного планування заходів реагування задля зменшення втрат 
і загроз для життя населення. Основна увага приділяється удосконаленню математичних моделей і методів, які 
дозволяють підвищити ефективність логістичних операцій. 

Запропоновано новий підхід щодо математичного моделювання багатоетапних логістичних процесів, який 
поєднує ідеї оптимального розміщення проміжних розподільчих центрів та мультиплексного зонування територій. 
Існуючі моделі задач розташування логістичних центрів з двоетапним розподілом ресурсу удосконалено завдяки 
закріпленню кожного кінцевого споживача за кількома найближчими проміжними розподільчими центрами, що 
підвищує надійність надання послуги потребуючим. Центрами, що розміщуються, можуть бути або пункти пер-
винного збору населення на випадок його евакуації з території надзвичайної ситуації, або пункти розподілу і ви-
дачі предметів першої необхідності, які надходять зі складів державного резерву або інших хабів і розподіляють-
ся між проміжними центрами для доставки мешканцям постраждалого регіону. Розроблений математичний апа-
рат дозволяє визначати оптимальну кількість, місткість і місця розташування проміжних розподільчих центрів, а 
також раціонально організовувати логістичні процеси та ефективно розподіляти ресурси між усіма учасниками 
логістичного ланцюга. 
Математичне забезпечення сформульованих задач ґрунтується на теорії неперервних задач оптимального роз-
биття множин, теорії двоїстості, методах лінійного програмування транспортного типу, а також сучасних алгорит-
мах недиференційованої оптимізації. Запропоновано чисельну схему розв’язання задач оптимального розподілу 
потоків у багаторівневих транспортно-логістичних мережах. 

Представлені результати мають прикладне значення для планування логістичних операцій у надзвичайних 
ситуаціях, зокрема для ефективного розміщення пунктів медичної та гуманітарної допомоги, розподілу ресурсів і 
евакуації населення. Запропонований підхід дозволяє реалізувати комплексну систему підтримки прийняття 
управлінських рішень у сфері кризового реагування, може бути використаний для вирішення широкого кола стра-
тегічних завдань у виробничій, соціальній та економічній сферах, забезпечуючи ефективну підтримку прийняття 
управлінських рішень у складних логістичних системах. 

Ключові слова: оптимізація, транспортно-логістична система, багатоетапний розподіл, мультиплексне роз-
биття континуальної множини, розміщення об’єктів, системний підхід. 
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